
 
 

 

Existence of Nash equilibria in sporting contests 
with capacity constraints 
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This article considers a contest model of an n-team professional sports league.  

The market areas in which teams are located may differ from one another and each 

team may have different preferences for winning. In a general asymmetric sporting 

contest, we demonstrate that under standard assumptions, there exists a unique 

non-trivial Nash equilibrium in which at least two teams must be active in equilibrium. 

In addition, we prove that at the non-trivial equilibrium, each team’s winning 

percentage and playing talent are determined by its composite strength—market size 

and win preference. 
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1. Introduction 

The main purpose of this paper is to demonstrate the existence of pure-strategy Nash 

equilibria in an “n” team sporting contest. Since the seminal papers of Szymanski (2003, 

2004) and Szymanski and Késenne (2004), the Nash equilibrium model has been used in 

the analysis of professional team sports. However, many papers have been restricted to a 

two-team league model (Chang and Sanders, 2009; Cyrenne, 2009; Dietl et al., 2009).   

Dietl et al. (2008) that is considered a more general n-team league model; however, it is 
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based on the assumption that all teams have identical revenue generating potential and 

cost functions. Thus the sporting contest is symmetric. These restrictions most probably 

apply to the Nash equilibrium model in sports because of the difficulty in managing 

non-identical teams with respect to their market size or drawing potential by 

conventional means, which treat the Nash equilibrium as a fixed point of the best 

response mapping. This entails working in a dimension space equal to the number of 

teams. In the present study, we adopt the share function approach introduced in Cornes 

and Hartley (2005) which extends the inclusive reaction function used by Szidarovszky 

and Yakowitz (1977) to study Cournot oligopoly games. The advantages of the approach 

are twofold: one is to avoid the proliferation of dimensions associated with the best 

response function approach and the other is to be able to analyze sporting contests 

involving many heterogeneous teams. Following the same steps as in Cornes and Hartley 

and Hirai and Szidarovszky (2013), we will prove that there exists a unique non-trivial 

Nash equilibrium in which at least two teams must be active in equilibrium. The 

uniqueness of Nash equilibrium is an important issue for the non-cooperative game. If 

the equilibrium is unique, then we have a self-constrained theory for predicting the 

game’s outcome. Moreover, uniqueness is crucial for comparative statics analysis which 

allows one to obtain qualitative results. 

In addition, this study demonstrates that at the non-trivial equilibrium, each team’s 

winning percentage and playing talent are determined by its composite strength, its 

market size and win preference. The findings’ implications are significant for the premise 

of competitive-balance rules such as revenue sharing and salary caps. It has been 

recognized that unrestricted competition between teams will lead to a league dominated 

by a few large-market teams with strong-drawing potential. In the theoretical literature on 

sports contests, however, this situation is not self-evident. Szymanski and Késenne (2004, 

p. 169) demonstrated that if there is no revenue sharing in equilibrium, a large-market 

team will dominate a small one in a two-team league. However, Késenne (2005, p. 103) 

observed that this result does not necessarily hold in an n-team model. Moreover, 

Késenne (2007, pp. 54-55) and Dietl et al. (2011) demonstrated that if team objectives 
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maximize a combination of profits and wins, as introduced by Rascher (1997), a 

large-market team will not always dominate a small one in equilibrium, but these studies 

are restricted to two-team models. The contribution of the present study is in unifying 

and clarifying the results of these studies by putting them into a more general n-team 

model. 

The rest of the paper is organized as follows. Section 2 explains the basic model and 

the assumptions. In Section 3, we establish the existence of Nash equilibria in an n-team 

sporting contest. In this section, we also compare the winning percentage and playing 

talent of teams of different market sizes and win preferences. Concluding remarks are 

presented in Section 4. 

 

2. The Model 

We consider a professional sports league consisting of  teams where each 

team  independently chooses a level of talent, , to maximize the 

objective function. By assuming a competitive labor market and following the sports 

economics literature, talent can be hired in the players’ labor market at a constant 

marginal cost ; hence, the cost function can be written as 

 

  (1) 

 

On the revenue side, the season revenue function of a team is defined as 

 

  (2) 

 

 is total season revenue of team ,  is the winning percentage of the team. It is 

common in the sports economics literature to assume the following. 
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Assumption 1. For all , the function  satisfies  and  for 

. Moreover,  is twice differentiable and either satisfies  and 

 for all , or there exists a  such that if , then ; 

otherwise, , and  elsewhere. 

 

This assumption reflects the uncertainty of outcome hypothesis (Rottenberg, 1956; 

Neale, 1964) that consumers in aggregate prefer a close match to one that is unbalanced 

in favor of one of the teams. 

The win percentage is characterized by the contest success function (CSF). The 

most widely used functional form in sporting contests is the logit that can be written as 

 

  (3) 

 

where .1 The factor  results from the fact that winning percentages 

must average to  within a league during any one year; that is, . 

Notice that for the two-team models, the logit CSF (3) does not place a restraint on the 

teams’ choices. However, for the n-team models this is not the case with the logit CSF 

(3). More precisely, the winning percentage can be larger than one if a team holds more 

than  per cent of total league talent (with normalization of  to one). So, as in 

Szymanski (2010), we introduce an extra constraint: 

 

  (4) 

 

                            
1 The logit CSF was explicitly adopted in the seminal work of El-Hodiri and Quirk (1971). Groot 
 (2008, pp. 97-100) has expressed the season winning percentage as follows: . 

Although this equation gives the correct relationship between winning percentage and team 
quality, it considerably complicates the derivative of the marginal product of talent. We therefore 
choose the simple approximation of the winning percentage (3). 
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that is, when the number of teams exceeds by two, if , then the win percentage 

of team  is always one (see Figure 1). 
 

               

 

                   

 

 
 

 

                   0                                              

Figure 1 Shape of the winning percentage of team  

 

Then, the profit of team  is described by 
 

  (5) 
 

As in Rascher (1997), Késenne (2007, p.5), and Dietl et al. (2011), the objective function 

of team  is given by a linear combination of profits and wins, which can be written as 
 

  (6) 

 

where  is the weight parameter that characterizes the weight team  places on 

winning in the objective function.2 The objective function allows teams to be more profit 
                            

2 Note that Sloane (1971) was the first to suggest that the owner of a sports team actually 
maximizes utility, which may include inter alia playing success and profits. Garcia-del-Barrio and 
Szymanski (2009) empirically found that the behavior of clubs in English and Spanish leagues over 
the period 1994-2004 seem to closely approximate win maximization subject to a financial 
constraint. 
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oriented or more win oriented because the weight parameter  can be different for 

every team. We refer to this objective function as the payoff function of team . The 

objective of each team is to maximize  with respect to  subject to , 

where  is the capacity limit of team  due to financial constraints.3 Our analysis of 

the sports league is formulated as a simultaneous-move game and the solution concept 

we use throughout the study is that of a pure-strategy Nash equilibrium. 

Finally, it is occasionally assumed that the total supply of talent is fixed in the 

analysis of sports leagues. Researchers who have made this assumption have used a 

non-Nash conjecture to reflect this scarcity in each team’s first-order condition (Fort and 

Quirk, 1995; Vrooman, 1995). In this case and for a two-team league, we have . 

Indeed, although opinion is divided among sports economists on this subject, we use the 

Nash conjecture  in this study (see e.g., Eckard, 2006; Szymanski, 2004, 2006; 

Vrooman, 2007). The main reason is that as Szymanski (2004) acutely pointed out, as far 

as modeling the game is concerned, there is no inconsistency between the use of Nash 

conjecture and the assumption that supply of talent is fixed. 

 

3. Equilibrium Analysis 

We can now calculate the best response of team . Assume first that  in 

order that the other teams do not spend any resources on playing talent. Then, if , 

the payoff is negative in light of Assumption 1 and CSF (3). If team  sets , the 

payoff becomes zero. Therefore, this game always has a trivial equilibrium point 

. Our concern is with non-trivial equilibria (i.e., ) and thus 

no further consideration is given to the trivial point. 

If , it follows from payoff function (6) that we have 

  

                            
3 Hirai and Szidarovszky (2013) analyze asymmetric contests with budget-constrained players. 
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  (7) 

and this derivative does not exist if  for . As the second-order 

condition we obtain 

 

  (8) 

 

Under Assumption 1, the second-order condition (8) is satisfied. Therefore, team i’s best 

response function  is well defined. Notice first that the best response of this 

team cannot exceed  for . In contrast, assume that 

, then its payoff is given by the second case of (6). By decreasing the value of  by a 

small amount, its revenue stays the same, the parameter  is same and cost decreases.   

So the payoff of this team would increase contradicting the assumption that  

is the team ’s best response. Therefore with fixed values of  the best response of 

team i is selected in the  with . If the capacity limits of the teams 

are sufficient small, that is,  for all i and , then the constant segment of the 

winning percentage (4) cannot occur for all teams. For the sake of simplicity in the 

following discussion we will assume that this is the case. Hence, it follows from equation 

(7) that given , team ’s best response function  is given by 

 

   (9) 

 

where  is the unique solution of the strictly monotonic equation
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  (10) 

 

in interval  (see Figure 2). 
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Figure 2 Shape of the payoff function of team i 

 

Observe that because of Assumption 1, the left-hand side of equation (10) strictly 

decreases and is continuous in , positive at  and negative at , therefore 

there is a unique solution, . It is well known that a strategy profile  is 

an equilibrium if and only if for all  is the best response with fixed values of , 

that is, 

 

                            (11) 

 

However, application of the conventional best response function approach entails 

working in a dimension space equal to the number of teams. This significantly 

complicates the analysis of sporting contests with many heterogeneous teams. We then 

can rewrite the best responses of the teams in terms of aggregate talent, which we will 
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denote by . That is, 

 

                          .                     (12) 

 

Following Wolfstetter (1999, p. 91), we call  the inclusive reaction function of 

team , which is proposed by Szidarovszky and Yakowitz (1977).4 From equation (9), 

we have 

 

  (13) 

 

where  solves eqation 

 

  (14) 

 

in interval . Notice that in the third case of (13), the left-hand side of equation (14) 

is positive at , negative at , and strictly decreasing, because it has a 

negative derivative given by 

 

 

 

where the sign comes from Assumption 1. Therefore, there is a unique solution of 

equation (14), which is a continuously differentiable function of  by the implicit 

                            
4 Cornes and Hartley (2005) called this function replacement function. 
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function theorem. 

In view of (11) and (12), it is easy to see that Nash equilibrium values of  are the 

solution of the equation 

 

                                                  (15) 

 

The left-hand side, denoted by , has the following properties. It is continuous,  

since all  are continuous,  for sufficiently small values of , since 

 for all  and,  since . Therefore, there is at least 

one solution. Furthermore, if  is strictly monotone decreasing in interval , then 

equation (15) has a unique solution , and the corresponding equilibrium talents are 

. 

So, implicitly differentiating equation (14) with respect to  and considering 

, we have 

 

, 

 

implying that 

 

 

 

Here the denominator is negative but the sign of the numerator is not determined by 

Assumption 1. Hence,  is not necessarily monotonic. This fact creates slight 

additional difficulties in order to prove uniqueness of non-trivial Nash equilibrium.5 
                            

5 Notice that the best response function  is not necessarily monotonic either, which 
stands in contrast to monotonic best response functions: either decreasing---i.e., strategic 
substitution---or increasing ---i.e., strategic complementarity (see Bulow et al., 1985). 
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 So, we will examine the properties of team ’s share function , 

proposed by Cornes and Hartley (2005). As stated above, the inclusive reaction function 

differs from the best response function in that it uses the aggregate talent as the 

independent variable. The share function shares this feature, but works with a different 

dependent variable, that is, the team’s share of aggregate talent. We define team ’s 

share value as . It follows from team ’s inclusive reaction function (13) that 

we have 

 

                        (16) 

 

where  is the unique solution of equation 

 

                                      (17) 

 

in interval . The left-hand side of equation (17) is positive at , negative 

at , and strictly decreasing, because it has a negative derivative given by 

 

 

 

where the sign comes from Assumption 1. Therefore, there is a unique solution  

which is differentiable by the implicit function theorem. In our further analysis we will 

need the derivative of the share function. By differentiating equation (17) with respect to 

 and considering , we have 
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implying that 

 

                                          (18) 

 

The inequality follows since the numerator is positive and the denominator is negative by 

Assumption 1. So,  is continuous with constant and strictly decreasing segments. 

Then, equation (15) can be also rewritten as 

 

                                                    (19) 

 

where the left-hand side is strictly decreasing in  unless all . Suppose that 

equation (19) can have two different solutions  Then, at least two teams 

must be active in the non-trivial Nash equilibrium. Assume therefore that 

. In this case  and for all  in light of 

expression (18). Then 

 

  

 

which is an obvious contradiction. Therefore, the equilibrium value of  is unique.   

Given an equilibrium , the corresponding unique strategy profile  is found 

by multiplying  by each team’s share evaluated at : . Hence we prove 

that the following result: 
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Proposition 1. Under Assumption 1, the sporting contest has a unique non-trivial Nash 

equilibrium in pure strategies. 

 

The share function approach is very helpful in proving the existence and uniqueness 

of the equilibrium, as stated above.6 In addition, it provides a simple computational 

method to find the equilibrium. 

 

Example 1. Assume linear revenue functions,  with . 7  The 

parameter  represents the market size of team . The payoff of team  now has the 

form 
 

 

 

In this case  is strictly concave in  with derivative 

 

 

 

and this derivative dose not exist if  for . For the sake of simplicity we 

assume again that  for all i and , that is, the constant segment of the winning 

percentage (4) cannot occur for all teams. Since  is strictly concave in , the best 

                            
6 In the oligopoly literature there is a large set of sufficient conditions for existence and 
uniqueness, some of which are more and some less technically demanding (see, e.g., Friedman, 
1986). However, the share function approach has the advantage that it is accessible without 
advanced mathematical prerequisites. 

7 Szymanski (2010) assumed a quadratic revenue function and presented a simulation model of an 
n-team sports league.  
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response of team  is unique and is given as 
 

   (20) 

 

where . Then, the inclusive reaction function of team  is easily obtained 

from the best response function (20): 

  

  (21) 

 

By dividing both side of (21) by , the share function of team  is given as 

 

  (22) 

 

Notice that the three functions are no more than alternative ways of presenting 

precisely the same information. However, the simple piecewise-linear form of the share 

function (22) suggests that this is the most convenient to use. It follows from equation 

(19) that Nash equilibrium values of  occur where the aggregate share function equals 

unity. By assuming an interior optimum, then from (22), 
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So the aggregate talent is 

 

  

 

and by substituting it into the third case of (22), the share values of team  are given by 

 

  

 

Given , the corresponding equilibrium strategy profile is found by multiplying  by 

each team’s share evaluated at : 

 

 

 

Finally, a team’s winning percentage in (3) is determined by the ration of its talent to all 

the talent in the league. Therefore, the equilibrium win percentage of team  is given by 

 

 

 

The approach to share function used in this study is also useful for deriving certain 

properties of the equilibrium win percentage and playing talent of team . For simplicity, 

consider an interior equilibrium in what follows. Then we can establish the following 

results.  
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Proposition 2. Suppose Assumption 1 holds for all teams. Then at the non-trivial Nash 

equilibrium, we have 

 

 

 

Proof. See Appendix 1. 

 

It follows from Proposition 2 that in the non-trivial equilibrium, the teams winning 

percentages are determined by their composite strength—the marginal revenue of the 

winning percentage ( ) and the weight parameter —. Following Quirk and Fort 

(1992, p. 272), we define the marginal revenue of a win for team  as the market size or 

drawing potential for the team. In line with most of the existing literature, if 

 for any given win percentage, we will refer to team  as the large-market (or 

strong-drawing) team and team  as the small-market (or weak-drawing) team.8 

First, we consider a special case in which all teams are pure profit-maximizers.  

Thus, the following corollary follows from Proposition 2. 
 

Corollary 1. Suppose all teams are pure profit-maximizers and satisfy Assumption 1. 

Then, at the non-trivial Nash equilibrium we have 

 

 

 

This corollary implies that if all teams are assumed to be profit-maximizers, the 

large-market team hires more talent than the small one in the non-trivial equilibrium. 

Thus, the large-market team will always dominate competition in a league with (pure) 

profit-maximizing teams. This agrees with the result of Szymanski and Késenne (2004, 

p.169) for a two-team model. Késenne (2005, p. 103) observed that this result does not 

                            
8 Burger and Walters (2003) and Krautmann (2009) empirically found that the marginal revenue 
of the win of a large-market team is larger than that of a small one in Major League Baseball. 
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necessarily hold in an n-team model. However, it follows from Corollary 1 that 

Szymanski and Késenne’s results still hold in the general n-team setting. 

Second, in view of Proposition 2, it is interesting to note that weak-drawing teams 

that are more win-oriented can dominate strong-drawing teams that are more 

profit-oriented, as the following examples demonstrate. 

 

Example 2. Suppose  with . Using Proposition 2, it is easily seen that 

 Thus, if 

, then the small-market team  dominates the large-market team . 

 

Example 3. Let  with  and . The parameter  

characterizes the effect of competitive balance on team revenues. Then, in view of 

Proposition 2, it can be easily demonstrated that in the non-trivial Nash equilibrium 

; clearly, this is equivalent to 

 Therefore, the result is same as given in Example 2 

above. 

 

Késenne (2004) called this phenomenon the “good” competitive imbalance because 

sports will be much more attractive, at least for the neutral spectator, when a 

small-market team succeeds in beating large-market teams. However, Examples 2 and 3 

also suggest that if the win preference of large-market teams is larger than or equal to 

that of the small-market teams, a good imbalance will not occur in a professional sports 

league. This follows in general from the observation of Proposition 2. 

 

Corollary 2. Suppose Assumption 1 holds for all teams. Then, if the win preference of 

the large-market team is larger than or equal to that of the small-market team, the 

large-market team has a higher winning percentage than the small-market team in the 

non-trivial Nash equilibrium.  
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Proof. See Appendix 2. 

 

Késenne (2004) called this scenario the “bad” competitive imbalance because a few 

large-market teams with strong drawing potential dominate the competition year after 

year. Competitive-balance rules, such as revenue sharing and salary caps, usually attempt 

to prevent the bad type of imbalance. Although Késenne (2007, pp. 54-55) and Dietl et al. 

(2011) demonstrated Corollary 2, these studies are restricted to two-team models.   

Therefore, the results of Késenne and Dietl et al can be extended to a more general 

n-team model by Corollary 2. 

 

4. Conclusions 

This study has proven that under general conditions, a unique non-trivial Nash 

equilibrium exists in a contest model of an n-team sports league in which teams 

maximize a linear combination of profits and wins. Further, we have demonstrated that if 

the win preference of the large-market team is larger than (or equal to) the small-market 

team, then the former will dominate the latter in the non-trivial equilibrium. Over the past 

few years, the Nash equilibrium concept has been used in the analysis of professional 

team sports. However, many papers restricted attention to two-team models. This study 

applies the share function approach to a general n-team professional sports model, an 

approach that avoids the dimensionality problem associated with the best response 

function approach. In addition, this approach is to be able to analyze sporting contests 

involving many heterogeneous teams. We believe that the present study may serve as a 

basis for further theoretical research on professional team sports. 

Further research may take the following directions. First, our model has assumed 

that teams are price takers: the per-unit price of talent is treated parametrically by the 

teams. However, it might be reasonable to assume that teams have buyer power in the 

market for talent (Madden, 2011). Hence, we would like to extend our analysis in the 

presence of labor markets with oligopsony power. Second, a particularly great deal of 
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attention has been focused on revenue sharing’s effects on competitive balance in sports 

economics literature. However, when the number of teams exceeds by two, revenue 

sharing’s effects on the competitive balance are not clearly described. Késenne (2005) 

showed that if sports leagues with profit-maximizing teams introduce pool revenue 

sharing, then the team with the higher number of playing talents before sharing will 

reduce its demand for talent less than the team with the lower number of playing talents 

in an n-team model. Moreover, we have demonstrated that if all teams are assumed to be 

profit-maximizers, the large-market team hires more talent than the small one in the 

non-trivial equilibrium (Corollary 1). Based on these results, we can conjecture that the 

result of Szymanski and Késenne (2004) for revenue sharing will carry over in the 

general n-team setting: revenue sharing leads to less competitive balance. The rigorous 

proof will be our future research. 

 

Appendix 1 

Proof of Proposition 2 

Take two teams  and . Consider now an interior equilibrium, then from 

equation (17), 

 

 

 

and 

 

 

 

respectively. Dividing the first equation by the second and rearranging the terms, we get 
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                           (A1) 

 

From (A1), we can assert that  if and only if 

 

 

 

The proof is completed by observing that  in context to (3). 

 

Appendix 2 

Proof of Corollary 2. 

Suppose that if the win preference of a large-market team  is larger than or equal 

to that of a small-market team , then  in the non-trivial equilibrium. Then, it 

must be true that  in light of Proposition 2. However, if 

, we know that  is greater than , because the marginal 

revenue curve for the large-market team, team , lies above the marginal revenue curve 

for the small-market team, team , for any given win percentage. Then  by 

Proposition 2. This is a contradiction, since we assumed the winning percentage of team 

 is larger than or equal to that of team  in the non-trivial equilibrium. Therefore, if the 

win preference of a large-market team  is larger than or equal to that of a small-market 

team , then  in the non-trivial equilibrium. 
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