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Abstract

Using the pure price inflation rates extracted and estimated
by an innovative financial-asset pricing method, we build and es-
timate univariate time series models of Japanese yen per U.S.
dollar real exchange rates. Employing three methods of modeling,
we find consistently that the extracted price index-based real ex-
change rate, 7, obeys a stationary, mean-reverting process. The
mean-reverting behavior detected is consistent with the less re-
strictive version of absolute PPP in which a real exchange rate is
allowed to temporarily deviate from its mean. Further, the sta-
tionarity of r; is fundamentally attributable to frequent and sharp
changes in expectations reflected in goods prices that are implied
by the extracted pure price inflation rates. Finally, an intuitive
conjecture is presented that, in the long run, stationary series (r;)
would be less difficult to predict than nonstationary (random-
walk) time series, because of the long-run, mean-reverting behav-
ior of r;. The conjecture is supported by the out-of-sample fore-
casting performance comparison between r; and the random-walk
CPI-based real exchange rate, rCF7, for three- to six-month fore-
cast horizons. This would reinforce evidence of the stationarity
of r¢. A desirable feature of stationary real exchange rate is also
presented with regard to equilibrium error.

*I am indebted to Richard Roll for constructive comments and suggestions and
for helping download from the American Economic Association Website the data
and program files written for Chowdhry, Roll and Xia (2005), without which the
present research would not have been initiated. All remaining errors or omissions are
mine alone. The research was conducted and the working paper was written while I
was Visiting Scholar at The John E. Anderson Graduate School of Management at
UCLA during the academic year 2005-2006: Finance Working Paper 12-06, down-
loadable at http://www.anderson.ucla.edu/documents/areas/fac/finance/12-06.pdf,
http://www.anderson.ucla.edu/x5962.xml or at http://ssrn.com/author=649009.
The present paper is a revised version of Finance Working Paper 12-06, which is
a companion paper to Kojima (2006).
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1 Introduction

The paper considers a set of three economic variables (all logged): a
nominal exchange rate, s, of a home currency (Japanese yen) against a
foreign currency (U.S. dollar), a foreign price index, p}, and a home price
index, p;, where the price indices are constructed from the estimates
for realized pure price inflation rate extracted from stock returns by
Chowdhry, Roll and Xia (2005) (C-R-X). With extracted price index-
based real exchange rate defined as r, = s;+pj —p;, absolute purchasing
power parity (PPP) asserts that s; + p; = p;, implying r; = 0, while
relative PPP requires, in terms of percentage, that As; + Ap; = Ap;
where A is the first difference operator.! C-R-X investigate the PPP
puzzle, focusing on the failure of relative PPP, and successfully resolve
the puzzle in the short run by using their extracted inflation rates as
Ap; and Ap; (C-R-X, pp.260-261).

More recently, using the same extracted inflation rates, Kojima (2006),
a companion paper, attempts in a vector error-correction (VEC) frame-
work to explore the PPP relation and the impulse responses of prices
and exchange rate, finding strong evidence supportive of the PPP re-
striction which yields the equilibrium error in the form of an extracted
price index-based real exchange rate, sy + p; — py.

Two critical questions now arise: what model or stochastic process
does the extracted price index-based real exchange rate (i.e., the equilib-
_rium error in the PPP-based VEC model), r;, obey, and is it stationary
or not? The existing empirical literature on real exchange rate behavior
is vast but, prior to C-R-X, only relies on the official price indices such as
CPI and WPL.2 The questions raised here are entirely new with regard
to the real exchange rate under study, and twofold research objectives
are thus set in the present paper:

(i) to model the real exchange rate, r;; and

(ii) to derive and study implications of the model built.
For research objective (i), three methods of modeling are employed and
combined so as to be assured of robustness of the results; an important
past work relevant to the research objective is Roll (1979) presenting an

1See, for example, MacDonald and Marsh (1994, pp.24-25), and Hausman, Panizza
and Rigobon (2006, p.94).

2The existing literature on real exchange rate (using official price indices) includes
Glen (1992), Lothian and Taylor (1996), Wu (1996), and Cashin and McDermott
(2004); for further past literature, see Kojima (1993) carrying out a time series anal-
ysis of the yen per dollar real exchange, focusing on time-series structure changes.
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innovative, efficient markets view of the PPP that the real exchange rate
should follow a random walk process. Research objective (ii) is designed
to present implications that could help shed light on the stochastic fea-
tures of the real exchange rate; in so doing, we focus on a less restrictive
version of absolute PPP, equilibrium error (in the VEC context), ex-
pectations about future, and out-of-sample forecasting performance. In
particular, a test of out-of-sample forecasting performance will be con-
ducted in an attempt to reinforce the stochastic features of the model
built in (i).

To my knowledge, the present paper is the very first attempt to ap-
ply C-R-X’s inflation rates extracted from stock returns in investigating
these topics for the yen per dollar rate, and we will proceed by analyzing
a series of the following problems:

It is worthwhile first asking what graphical/visual features are ob-
served in the inflation rate differentials between Japan and the U.S.,
and in the price index differentials. Exploring the features for both
-extracted and CPI inflations should help explain differences in move-
ment, if any, between r; and CPI-based real exchange rate, 7¢"7, where
r&Pl = s4+cpif —cpiy with cpiy and cpif being, respectively, the Japanese
and U.S. official CPlIs.

Second, does the real exchange rate, r;, follow a random walk? If it
does not, then what stochastic process does it obey and is it stationary or
not? To inquire consistency across modeling results, we will employ three
methods of modeling r;: unit-root testing, the Engle-Granger (1987)
two-step cointegration test and the Box-Jenkins (1976, 1994) univariate
time series modeling.

Third, as we derive implications of stochastic nature of r;, we first look
at a less restrictive version of absolute PPP and the concept of equilib-
rium error, and study the stationarity of the equilibrium error. After
relating goods arbitrage and expectations about future to the stochastic
nature of real exchange rates, we then turn to the out-of-sample fore-
casting performance test, asking, in particular, which real exchange rate
is better predicted, r; or ¢!, This question is raised to examine our
intuitive conjecture that, in the long run, stationary time series would
be less difficult to predict than nonstationary series, because of the long-
run, mean-reverting behavior of stationary series. If the conjecture is
supported by the data, then evidence documented on the stochastic na-
ture of r; could be reinforced.

The remaining of the paper is organized as follows: section 2 gives the
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data source, and explores the visual features of 7; and ¢! movements

based on inflation rate differentials and price index differentials between
Japan and the U.S. Section 3 models r; by three mothods of modeling,
and in section 4 some implications are derived that the stochastic nature
of r; yields with respect to absolute PPP, equilibrium error, expectations
about future, and out-of-sample forecasting performance. Some conclud-
ing remarks, together with a summary of findings, are given in the final
section.

2 Data and Real Exchange Rate Movement

2.1 Data

The data period is May 1983 through December 1999. All the data
the present paper uses are detailed by Kojima (2006, section 2). The
CPI inflation rates (7rzC P I,t’i = J,U) and the estimates of pure inflation
rates (fi’}t,i = J,U) that C-R-X extracted from the stock returns are
plotted in Figures 1-4.> The U.S. and Japanese price indices (p; and
p:¢), as drawn in Figure 5, are logs of price indices constructed from (and
hence implied by) C-R-X’s extracted inflation rates, with price indices
.at month April 1983 being set equal to unity. The Japanese and U.S.
official CPIs (¢pi; and cpif), as drawn in Figure 7, are also studied and
similarly constructed from their respective inflation rates.

The data sources for s;,p; and p; (and for cpi; and cpi}) are now
described. The source of the data for the yen per dollar exchange rate,
s8¢, is the same as that in C-R-X (pp. 261-262): the Database Retrieval
System (v2.11), available at http://pacific.commerce.ubc.ca/xr/. The
monthly percentage changes are computed between the ends of two ad-
jacent months as (s; —s;—1) x 100 with s; denoting logged end-of-month
exchange rate.

The official CPI inflation rates, as plotted in Figures 1-4, are also
considered and their data source is also exactly the same as that used
by C-R-X (p.261). While the official CPI inflation rates are being saved
in one of the data files constructed by C-R-X and downloadable from
the American Economic Association (AEA) Website, C-R-X’s estimated
pure inflation rates extracted from the stock returns are not and must

3Throughout the paper, multiplying the extracted inflation rates and CPI inflation
rates by 100 gives percent-per-month figures.



Do Real Exchange Rates Follow a Random Walk? —5—

be computed and saved by one of the program files downloaded from the
AEA Website.*

Table 1 lists variable symbols used in the charts in the present paper,
associating them with those used by C-R-X.

Table 1 Notation

Notation in the Graphs| Notation Following C-R-X?%
eRfl, ERF1 R; f
eRf2, ERF2 RY,
gplc, GP1.C ﬂépl’t
gp2c, GP2_C ﬂgpl,t
pl, P1 Pt log of Pé +
p2, P2 vy log of P}{t
plc cpit log of PéPI,t
p2c cpiy log of PgPI,t
el2, E12, St log of month-end
yen per dollar exchange rate

%Superscripts, J and U, denote, respectively, Japan
and U.S.

oe;lapan: Extracted Inflation Rates and CPI Inflation Rates Japan: ion Rates and CPI ion Rates
- .27 0.024

— en
-

Figure1 Japan: Extracted In- Figure 2 Japan: Extracted In-
flation Rates R;t (eRf1l) and CPI flation Rates and CPI Inflation
Inflation Rates n¢p;, (gplc); Rates, with 7¢p; , (gplc) on the
1983:5 - 1999:12. See also Table Right-side Scale. See Figure 1 for
1 for the notation. the notation.

4See Kojima (20086, section 2) for details on C-R-X’s extracted inflation rates.
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Figure 3 U.S.: Extracted In-
flation Rates R?t (eRf2) and CPI
Inflation Rates 7%p;, (gp2-c);
1983:5 - 1999:12. See also Table
1 for the notation.
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Figure 4 U.S.: Extracted In-
flation Rates and CPI Inflation
Rates, with 7 , (gp2-c) on the
Right-side Scale. See Figure 3 for
the notation.
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Figure 5 Japan and U.S.:
Logs of Extracted Price Indices,
pe (pl) and py (p2); 1983:5 -
1999:12. See also Table 1 for the
notation.
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Figure 6 Logged Extracted
Price Index Differentials (Japan
minus U.S.): p, — p; (pl - p2);
1983:5 - 1999:12. See also Table
1 for the notation.

2.2 Movements of extracted price index- and CPI-
based real exchange rates

Both inflation rate differentials and price index differentials between
Japan and the U.S. are here studied visually to give possible explana-
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tions for differences in behavior between the two real exchange rates, r;
and r&FIL

2.2.1 Inflation rate differentials between Japan and the U.S.

Ito (2005, pp.7-8) notes that “Since the [CPI] inflation rates of Japan
and the U.S. have been very similar since the beginning of the 1980s, the
tendency and fluctuations were parallel in the nominal and [CPI-based|
real exchange rate. ... The real exchange rate movement broadly reflects
the nominal exchange rate movement when inflation rates of the two
countries are similar while the nominal exchange rate is volatile.”®

Table 2 Summary Statitics:*> Monthly Data From 1983:05

To 1999:12 (Observations:200)

Inflation Rate leferentlals Mean |Std Dev | Minimum [ Maximum
CPL: 7lpr, — "opr, t -0.0017| 0.0050 | -0.0131 | 0.0209

Extracted: R R -0.0019| 0.1044 | -0.4291 0.2883

®Not in percetage: multiplying R} and ‘"C PI t,z = J,U (inflation
rate extracted from stock returns by C-R-X and CPI inflation rate,
respectively) by 100 gives percent-per-month figures. The means and
standard deviations match those (in percent per month) in C-R-X
(Table 6, p.266).

The same definition as given by C-R-X (Table 6, p. 266) is used.
¢See Figure 10.
dSee Figure 12.

“Very similar” CPI inflation rates of Japan and the U.S. as noted
above are confirmed by comparing in Table 2 the standard deviations
between the CPI inflation rate differentials, WépI,t - wgpl’t, and the

extracted inflation rate differentials, th — ]:EfUt (or comparing the CPI
inflation rate differentials in Figure 10 with the extracted inflation rate
differentials in Figure 12). Notice how much less the CPI inflation rate
differentials fluctuate.

This would imply that the extracted price index-based real exchange
rate, ¢, should behave very differently from the nominal exchange rate,
s¢, and hence from the CPI-based real exchange rate, rF7. This is

5The words in brackets [...] are inserted by the author, without changing in any
way Ito’s contention.
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indeed confirmed by visual inspection of Figures 13 (for ;) and 14 (for
r¢P1): in the latter figure, the CPI-based real exchange rate is seen to be,
as noted by Ito above, very similar in behavior to the nominal exchange
rate.

2.2.2 Price index differentials between Japan and the U.S.

Interestingly enough, a roughly similar downward trend is observed in
both CPI and extracted price index differentials, cpi; — cpif and p; — p}
(see Figures 6 and 8). This should be the case, since both indices are
shown to be cointegrated by C-R-X. Note, however, that, while extracted
price index and CPI are cointegrated, two real exchange rates computed
based on them, r; and r{'F7] exhibit sharply differing behavior due to
distinct difference in volatility between extracted and CPI inflation rate

differentials (as confirmed above by Table 2 and Figures 10 through 14).

Logged CPI Differentials (Japan minus U.S.)

o Japan and U.S.: Logs of CPI fa —y

030
0.00 . —
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Figure 8 Logged CPI Dif-

Figure 7 Japan and U.S. ferentials (Japan minus U.S.):

Logged CPIs cpi; (pl-c) and cpif

) = ) cpiy — cpiy (pl-c - p2_c); 1983:5 -
’(II‘)a %IZ ) ’113) 8113,;}516 111?)3:‘51102n See also 1999:12. See also Table 1 for the

notation.
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Japan and U.S.: CPI ion Rates
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Figure 9 Japan and U.S.: CPI
Inflation Rates n}p;, (gplc)
and 7¢py, (gp2-c), with 7Z%p;,
(gp2-c) on the Right-side Scale;
1983:5 - 1999:12. See also Table
1 for the notation.

Japan and U.S.: ion Rates
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Figure 11 Japan and U.S.:
Extracted Inflation Rates R,
(eRfl) and RY, (eRf2), with RY,
(eRf2) on the Right-side Scale;
1983:5 - 1999:12. See also Table
1 for the notation.
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Figure 10 CPI Inflation Rate
Differentials (Japan minus U.S.):
Teprs — Topr (8Pl - gp2-C);
1983:5 - 1999:12. See also Table
1 for the notation.

ion Rate Diff ials (Japan minus U.S.)
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Figure 12 Extracted Inflation
Rate Differentials (Japan minus
U.S.): R]{t - R?t (eRf1 - eRf2);
1983:5 - 1999:12. See also Table
1 for the notation.



— 10— Hirao KOJIMA
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Figure 13 Nominal (s; or e12) Figure 14 Nominal (s; or e12)
versus Real (r; or rxr) Yen per versus CPI-Based Real (r&F7 or
Dollar Exchange Rates (logged): rxr_c) Yen per Dollar Exchange
1983:5 - 1999:12. See also Table Rates (logged): 1983:5 - 1999:12.
1 for the notation. See also Table 1 for the notation.

3 Time Series Modeling of Real Exchange
Rate

To model the extracted price index-based real exchange rate, r; (to test
whether it obeys a random walk process, in particular), the present paper
employs three approaches:®

(i) unit-root testing of r; itself. The unit-root null (i.e., the null of a
unit-root autoregressive process or a random walk) will be tested,;

(ii) exploiting the Engle-Granger (single equation) two-step cointe-
gration methodology. If the two series ¢t = s; + p; and p; are not
cointegrated, the three series, s;, p; and p;, will wander away from one
another in the long run, without settling down on an equilibrium track.
This would then be an indication of the presence of random walk nature
in the real exchange rate behavior; and

(iii) Box-Jenkins time series modeling method. Their model identi-
fication technique, in particular, provides a useful complementary way

6An additional approach is available to modeling real exchange rate (see Mac-
Donald and Marsh, pp.25-28): (iv) estimating Ary = ¢+ Zle @i Ary_; + ug. The
random walk behavior will be assessed by testing the hypothesis that ¢; = 0 for all 4.
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of examining stationarity/nonstationarity, based on sample autocorrela-
tions and partial autocorrelations. That is, if sample autocorrelations
suggest nonstationarity of r;, then first-order differencing will be needed
(before estimating a time series model) so that Ar; will become sta-
tionary. Otherwise (i.e., if 7, is found stationary to begin with), no
differencing will be required before estimation.

The test results from all three methods, (i) through (iii), will be com-
bined in an attempt to obtain a consistent modeling result. In particular,
noncointegration in (ii) should imply a random-walk real exchange rate,
if methods (i) and (iii) both lead to a nonstationary time series model
for ry.

3.1 Unit-root testing

The top panel of Table 3 reports strong rejection (at the 1% level) of the
unit-root null for the extracted price-based real exchange rate itself,”
suggesting that 7, is not nonstationary and does not seem to follow
a random walk process. This coincides with our visual observation of
Figure 13 that there appears, for example, no definite trend in r;.

One remark is in order on the nonstationarity of the CPI-based real
exchange rate, r°F!. The middle panel of Table 3 reports the unit-root
test result for 7CF1 plotted in Figure 14: the unit-root null is not rejected,
as consistent with the figure (in which rF7 is seen to exhibit a trend
similar to the nominal exchange rate) and as widely documented in the
existing literature.® (A time series model of r¢'"! will be estimated later
and reported in Table 12, which will be seen to accord with non-rejection
of the unit-root null here.)

"Notice that the null is decisively rejected here, despite the low power against
stationary alternatives that standard univariate unit-root tests are known to have in
finite samples. See Rudebusch (1993, pp.264-265) for the early research questioning
the ability of the unit-root tests to reject the unit-root null when it is indeed false
(i.e., stationary alternatives are true); if the unit-root null failed to be rejected, then
it could be mainly due to the low power of the tests. (A more powerful, panel data-
based testing procedure is proposed by Wu 1996, pp.55-58, to test for the long-run
PPP. The proposed test will not be conducted here, for we only study Japanese yen
exchange rate.)

8See the footnote immediately above on failure to reject the unit-root null.
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Table 3 Unit-Root Tests® for Residuals from Static Models (1),

and for Real Exchange Rate, r;, and CPI-Based Real Exchange Rate,
CPI
Tt

Dickey-Fuller? Phillips-Perron®
With intercep
only, with 12 lags
With intercept
and trend with 4 lags 12 lags

in the error process |in the error process
T-test statistic:
Real exchange

rate, 1t —3.849¢ —4.460 . —4.295
‘With intercept
and trend,” with 12 lags
With intercept
and trend with 4 lags 12 lags

in the error process |in the error process
T-test statistic:
CPI-based

real exchange

rate, &P —2.4649 —1.882 —1.901

Regression Run|1984:06 to 1999:12] 1983:10 to 1999:12 | 1984:06 to 1999:12
bservations 188 200 200
Without intercep
and trend” with 12 lags
With intercept .
and trend with 4 lags 12 lags
in the error process |in the error process

T-test statistic: )
Residuals —3.518" —4.013 —3.926

2See Dickey and Fuller (1979), Phillips (1987) and Phillips, and Perron (1988).
For the difference between the tests see Doan (UG, p.242); for inclusion of the
trend term, see Doan (UG, p.246).

®The general form of univariate ADF regression is Ay, = le ¢lAAyt_L +
o1+ p+Pt+ug where A is the first difference operator. The null of a unit root
is @ = 0. The ADF statistics adjust for autocorrelation using an autoregressive
representation.

°The PP statistics correct for autocorrelation using a non-parametric cor-
rection. Critical values that apply here are: 1%= —3.464, 5%=—2.876, 10%=
—2.574.

dHere it is more appropriate for the constant to be included, for the real
exchange rate has a nonzero mean, without any obvious trend (see Figure 13).

€Critical values are 1%= -3.466 5%= -2.877 10%= -2.575.

fHere it is more appropriate for the constant and trend to be included, for
the CPI-based real exchange rate has a nonzero mean with a trend (see Figure
14).

9Critical values are 1%= -4.010 5%= -3.435 10%= -3.141.

hBoth intercept and trend are omitted. For a residual sequence, there is no
need to include an intercept term in the ADF test (Enders 2004, pp.336). There
is no such an option for the PP test in Doan (RATS).

iCritical values that apply here are: 1%= —2.577, 5%= —1.941, 10%=
—1.617. (Including the constant for the residuals yields T-test statistic -3.509
with Critical values: 1%= -3.466 5%= -2.877 10%= -2.575, which again leads to
the same decision.)
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3.2 [Engle-Granger (single equation) two-step coin-
tegration test

3.2.1 Two-step test

Step 1: Unit-root tests for the price series It is shown elsewhere,
as remarked in Kojima (2006, section 3.2.1), that the augmented Dickey-
Fuller (ADF) test and the Phillips-Perron (PP) test cannot reject, at any
conventional levels of significance, the null of a unit root for each of p;,
cpiy, pf and cpi}. The same non-rejection of the null is also documented
for the nominal exchange rate, s;.°

Step 2: Unit-root tests for the residuals, to check up on a coin-
tegration: a static approach!® The Engle-Granger static, long-run
model is estimated by an OLS method, with 8y and 3; being the coin-
tegrating or long-run parameters:

Y = Bo + Brws + v, (1)

with y; = s; + p}, and z; = p;. The regression results are reported in
Table 4, and the regression line and residuals are plotted, respectively,
in Figures 15 and 16. The unit-root test for the residuals is carried out
in the bottom panel of Table 3, to check up on a cointegration: both
the ADF and PP tests reject the null of a unit root, decisively at the 1-
percent level.!! The residual sequence thus is stationary, which, together
with s¢,p; and p; being all integrated of order one, implies that s; + pj}
and p; are cointegrated. (Though not reported, exactly the same results
are obtained for s; versus the price index differentials p; — p}, based on
the figures and table very similar to Figures 15, 16 and Table 3.)

9Those who challenge the unit-root tests would argue that failure to reject the
unit-root nulls is mainly due to the low power of the tests (see the earlier footnote).
Still, we will not question the unit-root test results here, since they are consistent with
both Kojima (2006, Table 2) who rejects by the (multivariate) Johansen procedure
the null of stationarity for each of s¢, p; and p}, and C-R-X (p.274) who show that
all pt, cpit, py and cpiy appear to be integrated of order one, I(1).

10The dynamic approach as recommended by Harris (1995, p.72) is not considered
in the present paper.

11 Again, the null is strongly rejected, despite the low power of univariate unit-root
tests.
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e12 + p2 vs p1 (logged), with a regression line: 1983:5 - 1999:12 Reg i i for e12 + p2 on p1: 1983:5 - 1999:12
576

yyyyyyy

pt : 1983 1985 1087 1989 1991 1993 1995 1997 1999

Figure 15 s +  pf Figure 16 Residuals from
(el2+p2) versus Dt Model (1): 1983:5 - 1999:12.
(pl): 1983 : 5 — 1999 : 12. The regression line is drawn in
See also Table 1 for the nota- Figure 15. See also Table 1 for
tion. the notation.

3.2.2 Implications

In the long run the yen per dollar exchange rate and the extracted price
indices are comoving with one another, which means that these time
series would not wander arbitrarily far from each other. This in turn
implies that the extracted price index-based real exchange rate defined
as s¢+p; —p: would not be nonstationary and hence not follow a random
walk process.!? This implication does coincide with the decisive rejection
of the unit-root null for the real exchange rate, ry, itself (as reported in
the top panel of Table 3).

If the real exchange rate was not a random walk, what process or
model would it obey? The next section attempts to model r; by the
Box-Jenkins univariate time series method, and the stationarity of r;
will be again examined.

3.3 Box-Jenkins modeling

Following the Box-Jenkins univariate modeling method, it is shown in
Figure 17 (especially, the left pair of SACF (sample autocorrelation func-

12Note that the lack of cointegration suggests that the time series would wander
arbitrarily far from each other, in which case nonstationary behavior would result.



Do Real Exchange Rates Follow a Random Walk? — 15—

tion) and SPACF (sample partial autocorrelation function)) that the real
exchange rate series appears stationary so that there will be no need for
differencing of any order before estimation,'® and that the appropriate

time series model will be identified as a first-order autoregressive model,
ARJ1]:1

Ty =cC+ G171 + Us. (2)

The estimated AR[1] model (2) is reported in Table 5 and its graphical
diagnostic check, relying on Hokstad (1983), is provided in Figure 19.
The model seems adequate: in particular, no additional AR or moving
average (MA) parameter is needed (as noted in Figure 19).

Is the stationarity condition that the first-order AR parameter ¢; be
less than unity in absolute value satisfied? On grounds of the two earlier
test results rejecting firmly nonstationarity of r; (that is, the decisive
rejection of a random-walk null and the Engle-Granger cointegration
test result that s; + p; and p; are comoving), we would infer that ¢;
of 0.834 (in Table 5) is less than unity, and thus that the stationarity
condition is satisfied.

Yet, those who hold strong a priori information that real exchange
rates are random walk may not be persuaded otherwise by the results
above. We thus, next, present implications that stationary (extracted
price-based) real exchange rate has with respect to absolute PPP, equi-
librium error, expectations about future, and out-of-sample forecasting
performance. Those implications should help shed light on the station-

ary features of the real exchange rate, 4, in contrast to the nonstationary
behavior of r{'F1. '

13Even without being differenced, r; looks stationary, since in Figure 17 the (left)
SACF of r; decays quite rapidly as lag becomes larger. How rapidly it is is clear
when compared with the (left) SACF in Figure 18 for the CPI-based real exchange
rate which is shown earlier in Table 3 to be nonstationary (having a unit root). That
is, the SACF of r; remains statistically significant only up to lag 5, while that of
rtc PI continues to be significant till as far as around lag 16. Following the Box-
Jenkins time-series modeling method, then, r; will be stationary (and hence need not
be differenced), whereas r{'F! is nonstationary (and hence need be differenced to be
made stationary). See, for example, Kojima (2005, Figure 5) who draws SACFs and
SPACFs of various stationary time series generated by simulation.

141t is identified as a first order AR, again by the Box-Jenkins method, since in
Figure 17 the (left) SPACF has a statistically significant spike only at lag one. See,
again, Kojima (2005, Figure 5) for details on how to identify a univariate time series
model by inspection of its SACF and SPACF.
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Table 4 Linear Regression - Estimation

by Least Squares: Model

Dependent Variable

1)
St +p;

Constant

Dt

Monthly Data

Usable Observations
Degrees of Freedom
Adjusted R2

Residual Standard Deviation
Regression F(1,198)
Durbin-Watson Statistic

5.211 (0.000)°
0.695 (0.000)
1983:05 To 1999:12
200
198
0.408

0.174
138.081 (0.000)
0.264

“P-value.

Table 5 Box-Jenkins -

Estimation by

Gauss-Newton: AR[1] Model (2)

Dependent Variable

Constant

Tt—1

Monthly Data

Usable Observations

Degrees of Freedom

Adjusted R?

Residual Standard Deviation

Regression F(1,197Z
Residuals:

Durbin-Watson Statistic

Q(36-1)

Tt
5.195 (0.000)°
0.834 (0.000)
1983:06 To 1999:12
199
197
0.699

0.101
460.779 (0.000)

1.878
21.583 (0.963)

“P-value.

YFor a further graphical residual analysis, see

Figure 19.
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Real Exchange Rate : Data (top), SACF (middle), SPACF (bottom)
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Figure 17 Real Yen per Dollar Exchange Rate, ;. SACF = sam-
ple autocorrelation function; SPACF = sample partial autocorrelation
function; the left set of graphs is for r; itself, and the right set for its
first-differenced series.

CPl-based Real Exchange Rate : Data (top), SACF (middle), SPACF (bottom)
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Figure 18 CPI-Based Real Yen per Dollar Exchange Rate, rZF7. See
Figure 17 for notes.
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Real Yen per Dollar Exch Rate : Resids.(top 1), Resids.Histog.(top r), SCCF( 1), Resids.SACF(b r)

[d (consecutive)= 0, D (seasonal)= 0 ; (AR, MA)=(1,0); (SAR, SMA)=(0, 0)]

LARARRAALEaRE Rase A ss A R et
1963 1985 1987 1989 1991 1993 1995 1997 1999 4 5 8 7 8 8 0 11 12 13 14
molyr class intervals

Figure 19 Real Yen per Dollar Exchange Rate, r;: AR[1] Residual
Analysis. The SCCF (sample cross correlation function) at lag [ is SCCF
between data(t) and resids(t — [): statistically significant SCCF at a lag
I < 0 suggests a need for an additional AR term at [. Statistically
significant residual SACF (sample autocorrelation function) at a lag I
suggests a need for an additional MA term at [. There is neither need
detected here. (The diagnostic check here relies on Hokstad 1983).
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4 Implications of Stationary Real Exchange
Rate

4.1 PPP and equilibrium error
4.1.1 Less restrictive version of absolute PPP

With ¢; less than unity in AR[1] model (2), short-run deviations from
PPP are present but will be only temporary and corrected at a rate equal
to 1 — ¢1, eventually disappearing in the long run: the real yen exchange
rate, 7, is mean reverting where the mean is ¢ (=5.195 in Table 5).1°
This is indeed consistent with the less restrictive version of absolute PPP
in which a real exchange rate is allowed to temporarily deviate from its
mean, and, interestingly enough, short-run deviations from PPP here
correspond to the concept of equilibrium error, as will be seen next.

4.1.2 The equilibrium error

Engle and Granger (1987) defines equilibrium error as follows: a set of
n economic variables (y;:,% = 1,...,n) is in long-run equilibrium when

Z Biyit = 0; (3)
i—1

the equilibrium error is a disequilibrium defined as a deviation from
long-run equilibrium and given by

€t = Zﬁiyz‘t; (4)
i=1

in the long run,
€t = 0. (5)

Clearly, real exchange rate, v, = s; + p} — p;, takes the form of eq. (4)
with 8; = 1,7 = 1,2 and f3 = —1, and thus may be interpreted as an

15See MacDonald and Marsh (p.25). Note that, using price levels instead of price
indices, long-run PPP requires that ¢ = ¢1 = u¢ = 0 in eq. (2), that is, 7 must be
a zero-mean stationary process; when using price indices, as in the present study, r:
may be equal to the (non-zero) constant, c. See again Figure 13 for the mean-reverting
movement of 7.
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equilibrium error; the equilibrium error here is stationary, since r; has
been shown to be stationary.

The stationarity of equilibrium error is an important result for a vec-
tor error-correction (VEC) form (7) of the vector autoregressive (VAR)
model (6), as is now shown. With y, = (s¢,p},p:)’, each element of
which is a potentially endogenous variable and assumed to be integrated
of order 1, I(1), Kojima (2006) considers VAR model including a con-
stant and augmented with centered seasonal dummies:

L

Y= Py, +p+¥D, +uy. (6)
=1

The underlying VAR model is reformulated in an error-correction form
as the VEC model:

L—-1

Ay, = Z Ay, + Ty, +p+ D, +u, (7)
=1

where the short-run matrices ®{* represent the short-run dynamics /adjustment
to past change, Ay,_;, and the long-run marix II represents long-run
adjustment.'® If the long-run marix IT is non-zero but less than full-rank
(letting r denote the rank), then it is usefully written as IT = a3’ and
hence, in (7), Ily,_, = aB'y,_, with B'y,_; being equilibrium error,
where o and 3 are 3 x r matrices.!”

Kojima (2006) estimates the VEC model (7) of prices and the yen
per dollar exchange rate, finding strong evidence supportive of the PPP
restriction which yields the equilibrium error, By, ; = ri_1(= s¢—1 +
Pi_1 — Pi—1). As a consequence, the stationarity of the real exchange
rate results in the equilibrium error being stationary. This is a desired
result for the VEC model (7), since one of the requirements for the model
is that Ily, ,, in which the equilibrium error (3'y,_; or, equivalently,
St—1+p;_1 —pt—1) is embedded, must be stationary for u; ~ I(0) to be
white noise.

16 The initial assumptions include, in particular, the white noise, uz ~ IN (0,%) or
u1,...,ur are niid(0,X); the dependence is allowed among the white-noise distur-
bance terms, ui¢;,u2t,,ust, for any t;,i=1,2,3.

17 o is a matrix representing a measure of the average speed of convergence towards

the long-run equilibrium (i.e., the speed of adjustment to disequilibrium).
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4.2 Expectations and goods arbitrage

The extracted price index-based real yen exchange rate follows a stochas-
tic process (2), different from a random walk process advocated by Roll
(1979) in his efficient markets view of PPP, which is derived using parity
conditions from the capital account of the balance of payments. The
difference in stationarity here may be fundamentally attributable to ex-
pectations reflected in goods prices.

The rationale behind real exchange rate being nonstationary includes
(i) sluggish changes in such real factors as productivity, technology and
consumer preferences. As real factors vary slowly over time (in the long
run), they will change only in a sluggish manner the relative prices of
goods between home and foreign countries, thus likely making the price
differentials between the two countries stable (i.e., not too volatile) and
moving the real exchange rate towards some direction, for a certain pe-
riod of time.

This tendency in a certain direction for a certain period of time may
also be, in part, due to (ii) goods being not freely traded.'® That is,
reflected in the goods prices are “more present and past circumstances
as they are embedded in existing contracts” (than expectations about
future circumstances),’® and thus the arbitrage speed is very slow in
the goods markets. This in turn makes sticky and less fluctuate the
price differentials between two countries, and, as a result, (ii) as well
as (i) most likely induce nonstationarity (or a tendency in a certain
direction for a certain period of time) of real exchange rate. Such widely
documented, nonstationary real exchange rate is the one computed based
on slow moving, official price indices.2°

On the other hand, if goods are freely traded between two countries
and arbitrage in goods markets is as fast and continuous as that in
financial markets,?! frequent and sharp changes in expectations about
future circumstances would be reflected in goods prices (as well as in
asset prices like exchange rates). This further would make the price

18See, for example, C-R-X (pp.255-256).

19See, for example, Frenkel (1981, p.162).

20Gee ,rtCP I in Figure 14 for its behavior (as compared with the 7 behavior in

Figure 13). Later, section 4.3.2 again looks at a tendency in a certain direction for a
certain period of time as exhibited by the official price-based real exchange rate.

21See, for example, Hausman, Panizza and Rigobon (p.94).



— 22 — Hirao KOJIMA

differentials between two countries sufficiently volatile?? that the real
exchange rate would not tend toward any direction but rather move in
an erratic manner.

An example of real exchange rate exhibiting such an erratic behavioral
pattern may be the real exchange rate, s; + p;j — p;, with the price
indices being those implied by C-R-X’s inflation rates, R;t and }A%[f]t,
extracted from stock returns. As we already saw in Table 2 and the
figures referred to there, C-R-X’s extracted inflation rate differentials
are highly volatile between Japan and the U.S. This implies that those
pure price inflation rates estimated by C-R-X successfully capture fast
and frequent goods arbitrage that would not be otherwise observed by
the slow-moving, official CPI inflation rate. As a result, the extracted
price index-based real yen exchange rate would be expected to behave
in an erratic manner (possibly around a certain level which in the long
run could be its mean),?® and such a behavior is indeed found in section
3 consistent with stationarity.?*

4.3 Out-of-sample forecasting performance

A test of out-of-sample forecasting performance could also help shed
light on the stationary features of the extracted price index-based real
exchange rate, r, as compared with the random-walk behavior of CPI-
based real exchange rate, r{'"Z. We ask a question: which real exchange
rate is better predicted, r; or r¢F1? The answer will naturally depend on
the length of out-of-sample forecast horizon, and our intuitive conjecture
is that, in the long run, stationary series (r;) would be less difficult to
predict than nonstationary (random-walk) time series (rF7), because
of the long-run, mean-reverting behavior of r;. If this conjecture is sup-
ported by the data, then evidence as presented earlier (in section 3) of a
stationary, mean-reverting nature of 7, and a random-walk, wandeéring
feature of r¢F! would be, in effect, reinforced. No conjecture is pre-

22For evidence on the high volatility, see Figure 6 (to be contrasted with Figure 8).

238ee 14 in Figure 13 for its erratic behavior (as compared with the th PI hehavior
in Figure 14).

24 Consistency with stationarity here could also be studied by asking whether the ex-
tracted price index-based real exchange rate satisfies standard stationarity conditions
that its mean, variance and autocovariances are all time-invariant, with autocovari-
ances dependent only on lag. Instead, we will confirm the consistency later in section
4.3.2, by visually looking at the erratic nature of the stationary extracted price-based
real exchange rate.
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sented with regard to forecasting performance in the short run, and we
will investigate, by way of forecast statistics check, whether short-run
forecasting performance is consistent with stationarity of 7, and nonsta-
tionarity of r&'F7.

We also ask which model better predicts r;, AR[1] model (2) or a
random walk model

Ty =CH reo1 + U (8)

The forecasting performance test result for the question will be presented
and interpreted later at the end of the present section.

Our final exercise is now to compute forecast statistics and test the
long- and short-run, out-of-sample forecasting performance of the real
exchange rate models. The sample period is now from May 1983 up to
June 1999, and the out-of-sample period July 1999 through December
1999.

4.3.1 Forecasting performance statistics

Extracted price index-based real exchange rate We forecast the
level of extracted price index-based real exchange rate, r;, by AR[1]
model (2). The estimated model is presented in Table 6 for the sample
period up to June 1999; the estimated result is almost the same as that
for the sample period up to December 1999 in Table 5. The dynamic
out-of-sample forecasts are tabulated in Table 7, and plotted in Figure
20.%5

The forecasting performance statistics are computed based on a differ-
ent set of forecasts than that in Table 7: Doan (RATS) re-estimates the
AR[1] model by extending the sample period and accordingly shortening
the forecast period; the re-estimated results are reported in Table 8, with
the corresponding, updated forecasts in Table 9.26 The forecasting per-
formance statistics computed based on those updated forecasts in Table
9 are shown in the top panel of Table 10. In the table, Theil’s U statis-
tics below [above] 1 indicates that the AR[1] model’s RMSE is [fails to
be] smaller than that for the naive, no-change (i.e., flat) forecasts which
are being set equal to the value at the forecast origin. The Theil’s U

25Dynamic forecasts are multi-step forecasts, where forecasts computed at earlier
horizons are used for the lagged dependent variable terms at later-horizons: for
example, the forecasted value computed for time 7" will be used as the first-period
lag value for computing the forecast at time 7'+ 1, and so on (Doan, UG, p.287).

26The re-estimation process here is detailed by Kojima (2005, pp.77-78).
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statistics (of between 0.255 and 0.800) in the top panel suggest that the
AR[1] model performs better than the naive model, for all the months

ahead.

The forecasting performance statistics here will be later compared with
the counterparts for the CPI-based real exchange rate model, over the

long and short forecast horizons.

55 Out-of-Sample Forecast of Extracted Price-based Real EXR, by AR(1) Model

ss Out-of-Sample Forecast of CPl-based Real EXR, by Random Walk

—  Actal
---- Forecast 7
54| —° 9s%Up.ContB. P
41 —-— 95% Low. Cont. B. o
-
53 P
7
,
52 i

5.1
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49
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T
Jan Feb Mar Apr May Jun Ju Aug Sep Oct Nov Dec
1999

Figure 20 Out-of-sample
Forecasts of Real Exchange
Rate r; by AR[1] Model (2),
with Forecast Period of 1999:7
- 1999:12. The forecasts are
reported in Table 7; standard
errors for the 95% confidence
bands plotted are computed fol-
lowing Doan (RM, pp.122-123).

T
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1999

Figure 21 Out-of-sample
Forecasts of CPI-Based Real
Exchange Rate 7CF7 by Random
Walk Model (9), with Forecast
Period of 1999:7 - 1999:12. The
forecasts are reported in Table
13; also plotted are the 95%
confidence bands (see note in
Figure 20).
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Table 6 Box-Jenkins - Estimation by
Gauss-Newton: AR[1] Model (2)®

_ 95 __

Table 7
Out-of-sample
Forecasts of
r4:% Forecast

Dependent Variable Tt .
Constant|  5.103 (0.000)° Period From
re_1 0.836 (0.000) 1999:07 To

Monthly Data |1983:06 To 1999:06 1999:12
Usable Observations 193 T999:07 TZ.930
Degrees of Freedom 191 1999:08 | 5.015
Adjusted R? 0.695 1999:09 | 5.044
Residual Standard Deviation 0.102 1999:10 | 5.068
Regression F(1,191) | 439.489 (0.000) 1999:11 | 5.089
Residuals: 1999:12 | 5.106
Durbin-Watson Statistic 1.874
Q(36-1)| 21.814 (0.960) The (dy-
N1 T

%Convergence in 3 Iterations. Final criterion ::l:,stsC) foa;

was 0.0000000 < 0.0000100.

bP-value.

computed by
the estimated
model in Table
6.

Table 8 Re-estimation Results for Updating the Forecasts in Table 9

Re-estimation: First Second Third
Dependent Variable T4 T4 T4
CONSTANT| 5.193 (0.000) 5.195 (0.000 5.193 (0.000
ri—1| 0.836 ’IQO.OOO) 0.834 (0.000 0.835 (0.000
Monthly Data|1983:06 To 1999:07 1983:06 To 1999:08 1983:06 To 1999:09
Usable Observations 194 195 196
Degrees of Freedom 192 193 194
Adjusted R? 0.697 0.698 0.699
Residual
Standard Deviation 0.102 0.102 0.102
Durbin-Watson Statistic 1.878 1.874 1.878
Q(36-1)] 21.955 ( 0.958) 21.972 (0.958) 21.388 (0.966)
Re-estimation: Fourth Fifth Sixth (Final)®
Dependent Variable T¢ ¢ T¢
CONSTANT| 5.191 (0.000 5.195 (0.000 5.195 (0.000
rt—1| 0.836 (0.000 0.834 (0.000 0.834 (0.000
Monthly Data|
1983:06 To 1999:09|1983:06 To 1999:10 1983:06 To 1999:11 1983:06 To 1999:12
Usable Observations 197 198 199
Degrees of Freedom 195 196 197
Adjusted R? 0.700 0.699 0.699
Residual
Standard Deviation 0.102 0.101 0.101
Durbin-Watson Statistic 1.878 1.875 1.878
Q(36-1)] 21.279 (0.967) 21.383 (0.966) 21.583 (0.963)

“P-value.

No forecasts are generated.
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Table 9 Out-of-sample, Updated Forecasts of r;:* Ex-

tended Sample Period and Shortened Forecast Period

Re-estimation:® None® First? Second Third Fourth Fifth
1999:07 | 4.9800¢

4.9867f

1999:08| 5.0149 5.0206

5.0726

1999:09| 5.0440 5.0489 5.0929

5.0411

1999:10 gg(li% 5.0726 5.1098 5.0661

1999:11| 5.0888 5.0923 5.1239 5.0871 5.0432

1373
1999:12| 5.1058 5.1089 5.1356 5.1045 5.0675 5.1468
5.1630

“Generated by THEIL instruction in Doan (RATS). The sixth
(final) re-estimation generates no forecasts.

bFor the estimation results, see Table 8.

°Meaning no re-estimation. Sample Period is From 1983:06
To 1999:06, and Forecast Period From 1999:07 To 1999:12. The
forecasts here are exactly the same as those reported in Table 7.

4Sample Period is From 1983:06 To 1999:07, and Forecast Pe-
riod From 1999:08 To 1999:12. The sample and forecast periods
are similarly varied for the remaining, second through fifth re-
estimations.

¢The upper figure is a forecast value.

fThe lower figure is an actual value.
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Table 10 Forecast Statistics

_ 97 _

Step[Mean Error Mean Abs Error RMS Error Theil U N.Obs

1 0.011 0.045° 0.054 0800 6
2 0.020 0.061 0.070 0.658 5
3 0.003 0.033 0.042 0.480 4
4 0.006 0.042 0.044 0.395 3
5 0.051 0.051 0.051 0.27 2
6 0.057 0.057 0.057 0.25 1
For 7¢FT: Random Walk Model (9)
1 -0.025 0.028° 0.031 0.972 6
2 -0.052 0.052 0.058 0.966 5
3 -0.076 0.076 0.081 0.959 4
4 -0.100 0.100 0.105 0.950 3
5 -0.124 0.124 0.127 0.938 2
6 -0.139 0.139 0.139 0.921 1
For r:: Random Walk Model (8)
1 0.040 0.058 0.069 1.019 6
2 0.079 0.101 0.109 1.032 5
3 0.086 0.086 0.093 1.069 4
4 0.115 0.115 0.119 1.078 3
5 0.200 0.200 0.200 1.065 2
6 0.240 0.240 0.240 1.069 1

%Some remarks are in order on how to compute the forecast statis-
tics: the italic figures are computed as follows (the underlined figures
below are those in Table 9):

- Mean Error (ME):

6-step-ahead ME=average of one 6-step-ahead forecast error (=ac-
tual —forecast)
=0.057=1{5.1630 — 5.1058}*;
5-step-ahead ME=average of two 5-step-ahead forecast errors=-0.051
=%[{5.1373 — 5.0888}** 4 {5.1630 — 5.1089}***].

- RMS Error (RMSE):

6-step-ahead RMSE=square root of average of one 6-step-ahead fore-
cast error squared =-/ %(*)2;
5-step-ahead RMSE=square root of average of two 5-step-ahead fore-

cast errors squared=-/ %{(**)2 + (s % %)2}.

- Theil U:

Theil U at Step £ =[RMSE at Step ¢]/[RMSE at Step ¢ of a naive
model, where “naive” means no-change (i.e., flat) prediction in the
sense that the ¢ step ahead forecast is set equal to the actual value
at the forecast origin; how to compute italic Theil U’s in the table,
following Doan (RM, pp.420-425), is detailed in Table 11.

bBoldface figures are greater than those in the middle panel.

“Boldface figures are smaller than those in the top panel.
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Table 11 Details of Computing Theil’s U Statistic®

Step £ Ny=N. Obs | Theil’s U,?

6 1 SSEncrs = 3% (vis — ¥0°)? = (y16 — y10)>,
where the subscript 0 indicates a forecast origin, and
SSENCF[ =SSE of

£ step ahead flat forecasts (NCF¥), y;o0, of yi¢

= (7'1999:12 — r1999:6)%, With y16 = r1999:12 and
Y10 = 1'1999:6
= {5.163" — 4.938}2=0.051;

RMSENcre = \/SSEncre/Ne = 1/0.051/1
=0.226

where RMSENCFg =RMSE of NCF@, and
TheilUs = RMSE¢/RMSENcFre where RMSEg is
from Table 10

=0.057/0.226
=(.252 with some rounding error.
N,
5 2 SSEncrs = Y ;- (¥is — Yi0)?

= (y15 — y10)* + (y25 — ¥20)*
= (’"fggg:u — r1999:6)% + (7'1[999:12 — r1999:7)°
= {5.137% — 4.938}2

+{5.163" — 4.9867}2
=0.071;

RMSENcrs = \/SSEncrs/Ns = 1/0.071/2
=0.188;

TheilUs = RMSEs/RMSENcrs

= 0.051,/0.188

=(.271 with some rounding error.

4 through 1 3 through 6 | Computed similarly as above.

%Detailed here is how to compute those italic Theil U’s in the top panel of Table
10, following Doan (RM, pp.420-425).

*Those figures underlined and with a superscript are the following (actual) r¢ figures
underlined and with a superscript: 1999:06=4.938, 1999:07=4.9867, 1999:11= 5.137%,
1999:12=5.163".

Naive (i.e., no-change or flat) prediction is set in such a way that the £ step ahead

forecast is set equal to the actual value at the forecast origin. See Doan (RM, pp.423-
425).
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CPI-based real exchange rate It is remarked in section 3.1 that
the unit-root null is not rejected for the CPI-based real exchange rate,
rPT (plotted in Figure 14).2” This is widely documented in the existing
literature and consistent with the extremely slowly decaying (left) SACF
in Figure 18. We thus next forecast the level of exchange rate, r'! by
estimating:

rtCPI:c+¢1rf_1;I+ut (9)

where the estimate of ¢; should not be statistically different from unity,
and c is a possibly non-zero drift term. Table 12 provides the estimated
results (the estimated ¢; of 0.977, in particular) consistent with both the
unit-root test result (in the middle panel of Table 3) and the extremely
gradually decaying SACF (in Figure 18). The dynamic out-of-sample
forecasts are tabulated in Table 13 and plotted in Figure 21.

The forecasting performance statistics are shown in the middle panel
of Table 10.2® The Theil’s U statistics (of between 0.921 and 0.972)
in the middle panel suggest that the random walk model appears to
perform almost as well as the naive (flat) forecasting model, for all the
months ahead; this is in line with our expectation on the nature of a
random walk process but in contrast with performance of the stationary
ry model (2).

4.3.2 Forecasting performance comparison: r; versus r&!

Comparing the forecasting performance statistics compiled in the top
and middle panels of Table 10, we see that the (stationary) AR[1] model
for r; performs better than the random walk model for r¢*!, except that,
based on Mean Absolute Error and RMS Error statistics, the random
walk model outperforms the AR[1] model at horizons as short as one
and two months (as is clear from boldface figures in the two tables).
The results may be interpreted as follows:

‘Medium/long run The forecasting performance result for three- to
six-month forecast horizons indeed coincides with our earlier intuitive

27See the middle panel of Table 3.

28Details of computing the forecast statistics here are omitted; note that, as in the
extracted price index-based real exchange rate model, the forecasting performance
statistics are computed based on a set of updated forecasts which are different from
those in Table 13.
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Table 13
Out-of-sample
Table 12 Box-Jenkins - Estimation by ForecasgsPI
Gauss-Newton:* Model (9) of  rpTh®
Dependent Variable roPT Forecast
Constant| 5.020 (0.000)° Period From
roB0.977 (0.000) 1999:07 To
Monthly Data|1983:06 To 1999:06 1999:12
Usable Observations 193 -
1999:0775.111
Degrees of Freedom 191 1999:08 |5.108
Adjusted R? 0.970 1999:09|5.106
Residual Standard Deviation 0.036 1999:105.104
Regression F(1,191) | 6269.601 (0.000) 1999:11(5.102
Durbin-Watson Statistic 1.886 1999:1215.101
Q(36-0)| 24.609 (0.949)
“The (dy-
“Convergence in 3 Iterations. Final criterion was namic) fore-
0.0000000 < 0.0000100 casts are
bP_value. computed by

the estimated
model in Table
12.

conjecture that, in the long run, stationary series would be less difficult to
predict than nonstationary (random-walk) time series. As our conjecture
is thus supported by the data for medium/long run (such as over three-
to six-month forecast horizons), earlier evidence (in section 3) of a long-
run, mean-reverting nature of r; would be here reinforced.

Short run On the other hand, in the short run (such as over one- to
two-month forecast horizons), the random walk model is found to per-
form better. This seems consistent with both (i) a tendency of random-
walk 7{P1 to move in a certain direction for some (short) period of
time,?® and (ii) the short-run erratic movement of stationary r: see
“Actual” in Figure 21 for the tendency of 7CF7 in a certain direction for
some (short) period of time and contrast it with the erratic behavior of
r¢ drawn as “Actual” in Figure 20.

29The tendency is captured well by the non-zero drift term, ¢ = 5.020, in Table 12.
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Overall, the out-of-sample forecasting performance study here adds
evidence consistent with a stationary nature of r; and a random-walk
nature of 7EF1,

4.3.3 Forecasting performance comparison: stationary AR[1]
versus random walk, for r;

One remark is in order on another question raised earlier: which model
predicts out-of-sample 7, better, AR[1] model (2) or random walk model
(8). The forecasting performance statistics are computed for the random
walk model and reported in the bottom panel of Table 10: comparing
them with those for the AR[1] model in the top panel of the table, we
readily see that the stationary AR[1] model outperforms the random
walk model, for all the months ahead. This, too, confirms the stationary
(long-run, mean-reverting) nature of r; in the context of the out-of-
sample forecasting performance.

5 Concluding Remarks

The paper documents evidence supportive of a stationary nature of ex-
tracted price index-based Japanese yen per U.S. dollar real exchange
rate, ;. The price inflation data used is a set of the estimates for real-
“ized pure price inflation rates extracted from stock returns by Chowdhry,
Roll and Xia (2005). Employing three methods of modeling, it is shown
consistently that r; obeys a long-run, mean-reverting stationary process.
The mean-reverting behavior detected is consistent with the less restric-
tive version of absolute PPP in which a real exchange rate is allowed to
temporarily deviate from its mean. The stationarity result is reinforced,
in particular, by the out-of-sample forecasting performance comparison
between r; and the random-walk CPI-based real exchange rate, r&¥!:
in the long run, stationary mean-reverting r; appears less difficult to
predict than nonstationary r&77,

These major findings include the following further evidence:

Based on the summary statistics and graphical inspection, the ex-
tracted inflation rate differentials between Japan and the U.S. fluctuate
much more highly than the CPI inflation rate differentials, implying that
r¢ should behave very differently from s;, and hence from r£F!. We note
that, while extracted price index and CPI are cointegrated, r; and r&"’
computed based on them exhibit sharply differing behavior due to dis-
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tinct difference in volatility between extracted and CPI inflation rate
differentials.

Modeling real exchange rate, r;, we find the following consistent re-
sults: (i) the unit-root testing of r; itself leads to decisive rejection of
the null of a random walk; (ii) exploiting the Engle-Granger (1987) two-
step cointegration methodology, s:,p; and p; are shown to comove in the
‘long run with one another, which eventually implies that 7, defined as
st +p; —pt would not be nonstationary; and (iii) the Box-Jenkins (1976,
1994) model identification technique leads to a first-order AR[1] process
for which we infer that its estimated AR parameter is less than unity
in absolute value (and hence the stationarity condition is satisfied), on
grounds of the two earlier strong test results (i) and (ii).

Implications of stationary real exchange rate are presented with re-
spect to absolute PPP, equilibrium error, expectations about future,
and out-of-sample forecasting performance. They are found to help shed
light on the stationary features of the real exchange rate, r;. We claim
that the stationarity of r; is fundamentally attributable to frequent and
sharp changes in expectations reflected in goods prices that are implied
by the extracted pure price inflation rates. In the out-of-sample forecast-
ing performance study, the data support our intuitive conjecture that,
* in the long run (such as over three- to six-month forecast horizons),
stationary series (r;) would be less difficult to predict than nonstation-
ary (random-walk) time series (r¢77), because of the long-run, mean-
reverting behavior of r;. On the other hand, in the short run (such as
over one- to two-month forecast horizons), the random walk model for
rtC PI is found to perform better; the result seems consistent with both a
tendency of random-walk {'F7 to move in a certain direction just for a
short period of time, and the short-run erratic movement of stationary r;.
-Further, in forecasting out-of-sample r;, stationary AR[1] model outper-
forms random walk model; this, too, confirms the stationary (long-run,
mean-reverting) nature of r;.

A similar study may be conducted using the U.K. and German infla-
tion rates extracted from the assoicated stock returns by C-R-X. The
topics explored for Japan deserve further research in an attempt to pro-
vide multi-country evidence on the stochastic nature of real exchange
rates.
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